Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add filters








Year range
1.
Korean Journal of Nephrology ; : 5-13, 2007.
Article in Korean | WPRIM | ID: wpr-117910

ABSTRACT

PURPOSE: alpha-Ketoglutarate (alphaKG), a Krebs cycle intermediate, is extensively used in the kidney as a fuel substrate and as a counter anion for organic acid secretion. It is known to be taken up by the proximal tubule cells via the brush-border as well as basolateral membranes. We explored biochemical characteristics of the brush-border and basolateral alphaKG transport systems in pars convoluta and pars recta of the proximal tubule, respectively. METHODS: Brush-border and basolateral membrane vesicles (BBMV and BLMV) were isolated from rabbit renal outer cortex and outer medulla by Percoll gradient centrifugation. Vesicular uptake of alphaKG was determined by rapid Millipore filtration method using alpha-14[C]KG as a substrate. RESULTS: Both BBMV and BLMV showed a Na-gradient dependent uphill transport of alphaKG. The systems in both membranes were similarly inhibited by Li and activated by Na (Hill coefficient of 1.4). Kinetic analyses indicated that the Na-alphaKG cotransporters in the BBMV had a lower substrate affinity as compared with those in the BLMV. The transport systems in BLMVs showed a similar Km but different Vmax between the outer cortex (Km: 34 uM, Vmax: 3.3 nmol/mg protein/10s) and outer medulla (Km: 37, Vmax: 1.8). On the other hand, the systems in BBMVs were different in both Km and Vmax between the outer cortex (Km: 194, Vmax: 3.3) and outer medulla (Km: 89, Vmax: 1.7). CONCLUSION: The findings suggest that both axial and apical to basolateral heterogeneity of the Na-alphaKG cotransport system in proximal tubules may be due to a physiological adaptation to efficiently utilize alphaKG in the kidney.


Subject(s)
Adaptation, Physiological , Biological Transport, Active , Centrifugation , Citric Acid Cycle , Filtration , Hand , Ketoglutaric Acids , Kidney Tubules , Kidney , Membranes , Population Characteristics , Symporters
2.
The Korean Journal of Physiology and Pharmacology ; : 21-26, 2002.
Article in English | WPRIM | ID: wpr-728774

ABSTRACT

Effects of cadmium (Cd) intoxication on renal endosomal accumulation of organic cations (OC ) were studied in rats using 14C-tetraethylammnium (TEA) as a substrate. Cd intoxication was induced by s.c. injections of 2 mg Cd/kg/day for 2-3 weeks. Renal cortical endosomes were isolated and the endosomal acidification (acridine orange fluorescence change) and TEA uptake (Millipore filtration technique) were assessed. The TEA uptake was an uphill transport mediated by H /OC antiporter driven by the pH gradient established by H -ATPase. In endosomes of Cd-intoxicated rats, the ATP-dependent TEA uptake was markedly attenuated due to inhibition of endosomal acidification as well as H /TEA antiport. In kinetic analysis of H /TEA antiport, Vmax was reduced and Km was increased in the Cd group. Inhibition of H /TEA antiport was also observed in normal endosomes directly exposed to free Cd (but not Cd-metallothionein complex, CdMt) in vitro. These data suggest that during chronic Cd exposure, free Cd ions liberated by lysosomal degradation of CdMt in proximal tubule cells may impair the endosomal accumulation of OC by directly inhibiting the H /OC antiporter activity and indirectly by reducing the intravesicular acidification, the driving force for H /OC exchange.


Subject(s)
Animals , Rats , Biological Transport, Active , Cadmium , Cations , Citrus sinensis , Endosomes , Filtration , Fluorescence , Ion Transport , Ions , Kidney , Proton-Motive Force , Tea , Tetraethylammonium
3.
The Korean Journal of Physiology and Pharmacology ; : 41-46, 2002.
Article in English | WPRIM | ID: wpr-728771

ABSTRACT

Effect of cadmium (Cd) intoxication on renal acid-base regulation was studied in adult male Sprague-Dawley rats. Cd intoxication was induced by subcutaneous injections of CdCl2 at a dose of 2 mg Cd/kg/day for 3-4 weeks. In Cd-intoxicated animals, arterial pH, PCO2 and plasma bicarbonate concentration decreased, showing a metabolic acidosis. Urine pH and urinary bicarbonate excretion increased and titratable acid excretion decreased with no change in ammonium excretion. In renal cortical brush-border membrane vesicles derived from Cd-exposed animals, the Na /H antiporter activity was significantly attenuated. These results indicate that chronic exposures to Cd impair the proximal tubular mechanism for H secretion (i.e., Na /H antiport), leading to a metabolic acidosis.


Subject(s)
Adult , Animals , Humans , Male , Rats , Acidosis , Acidosis, Renal Tubular , Ammonium Compounds , Cadmium , Cadmium Chloride , Hydrogen-Ion Concentration , Injections, Subcutaneous , Ion Transport , Kidney , Membranes , Plasma , Rats, Sprague-Dawley
4.
The Korean Journal of Physiology and Pharmacology ; : 63-72, 2000.
Article in English | WPRIM | ID: wpr-728337

ABSTRACT

Chronic exposure to cadmium (Cd) results in an inhibition of protein endocytosis in the renal proximal tubule, leading to proteinuria. In order to gain insight into the mechanism by which Cd impairs the protein endocytosis, we investigated the effect of Cd on the acidification of renal cortical endocytotic vesicles (endosomes). The endosomal acidification was assessed by measuring the pH gradient-dependent fluorescence change, using acridine orange or FITC-dextran as a probe. In renal endosomes isolated from Cd-intoxicated rats, the Vmax of ATP-driven fluorescence quenching (H -ATPase dependent intravesicular acidification) was significantly attenuated with no substantial changes in the apparent Km, indicating that the capacity of acidification was reduced. When endosomes from normal animals were directly exposed to free Cd in vitro, the Vmax was slightly reduced, whereas the Km was markedly increased, implying that the biochemical property of the H -ATPase was altered by Cd. In endosomes exposed to free Cd in vitro, the rate of dissipation of the transmembrane pH gradient after H -ATPase inhibition appeared to be significantly faster compared to that in normal endosomes, indicating that the H -conductance of the membrane was increased by Cd. These results suggest that in long-term Cd-exposed animals, free Cd ions liberated in the proximal tubular cytoplasm by lysosomal degradation of cadmium-metallothionein complex (CdMT) may impair endosomal acidification 1) by reducing the H -ATPase density in the endosomal membrane, 2) by suppressing the intrinsic H -ATPase activity, and 3) possibly by increasing the membrane conductance to H+ ion. Such effects of Cd could be responsible for the alterations of proximal tubular endocytotic activities, protein reabsorption and various transporter distributions observed in Cd-exposed cells and animals.


Subject(s)
Animals , Rats , Acridine Orange , Cadmium , Cytoplasm , Endocytosis , Endosomes , Fluorescence , Hydrogen-Ion Concentration , Ions , Kidney , Membranes , Proteinuria , Proton-Motive Force
5.
The Korean Journal of Physiology and Pharmacology ; : 513-519, 1999.
Article in English | WPRIM | ID: wpr-727842

ABSTRACT

Direct exposure of renal tubular brush-border membranes (BBM) to free cadmium (Cd) causes a reduction in phosphate (Pi) transport capacity. Biochemical mechanism of this reduction was investigated in the present study. Renal proximal tubular brush-border membrane vesicles (BBMV) were isolated from rabbit kidney outer cortex by Mg precipitation method. Vesicles were exposed to 50~200 muM CdCl2 for 30 min, then the phosphate transporter activity was determined. The range of Cd concentration employed in this study was comparable to that of the unbound Cd documented in renal cortical tissues of Cd-exposed animals at the time of onset of renal dysfunction. The rate of sodium-dependent phosphate transport (Na+-Pi cotransport) by BBMV was determined by 32P-labeled inorganic phosphate uptake, and the number of Na+/-Pi cotransporters in the BBM was assessed by Pi-protectable 14C-labeled phosphonoformic acid ((14C)PFA) binding. The exposure of BBMV to Cd decreased the Na+-Pi cotransport activity in proportion to the Cd concentration in the preincubation medium, but it showed no apparent effect on the Pi-protectable PFA binding. These results indicate that an interaction of renal BBM with free Cd induces a reduction in Na+-Pi cotransport activity without altering the carrier density in the membrane. This, in turn, suggest that the suppression of phosphate transport capacity (Vmax) observed in Cd-treated renal BBM is due to a reduction in Na+-Pi translocation by existing carriers, possibly by Cd-induced fall in membrane fluidity.


Subject(s)
Animals , Cadmium , Cadmium Chloride , Foscarnet , Kidney , Membrane Fluidity , Membranes , Phosphate Transport Proteins
6.
The Korean Journal of Physiology and Pharmacology ; : 35-43, 1997.
Article in English | WPRIM | ID: wpr-727809

ABSTRACT

Cis-dichlorodiammine platinum II (Cisplatin), an effective chemotherapeutic agent, induces acute renal failure by unknown mechanisms. To investigate direct toxic effects of cisplatin on the renal proximal tubular transport system, LLC-PK-1 cell line was selected as a cell model and the sugar transport activity was evaluated during a course of cisplatin treatment. Cells grown to confluence were treated with cisplatin for 60 min, washed, and then incubated for up to 5 days. At appropriate intervals, cells were tested for sugar transport activity using alpha-methyl-D-(14C)glucopyranoside (AMG) as a model substrate. In cells treated with 100 micrometer cisplatin, the AMG uptake was progressively impaired after 3 days. The viability of cells was not substantially changed with cisplatin of less than 100 micrometer, but it decreased markedly with 150 and 200 micrometer. In cisplatin-treated cells, the Na+/-dependent AMG uptake was drastically inhibited with no change in the Na+/-independent uptake. Kinetic analysis indicated that Vmax was suppressed, but Km was not altered. The Na+/-dependent phlorizin binding was also decreased in cisplatin-treated cells. However, the AMG efflux from preloaded cells was not apparently retarded by cisplatin treatment. These data indicate that the cisplatin treatment impairs Na+/-hexose cotransporters in LLC-PK-1 cells and suggest strongly that defects in transporter function at the luminal plasma membrane of the proximal tubular cells constitute an important pathogenic mechanism of cisplatin nephrotoxicity.


Subject(s)
Animals , Acute Kidney Injury , Cell Line , Cell Membrane , Cisplatin , Epithelial Cells , LLC-PK1 Cells , Phenobarbital , Phlorhizin , Platinum , Swine
7.
The Korean Journal of Physiology and Pharmacology ; : 403-411, 1997.
Article in English | WPRIM | ID: wpr-727629

ABSTRACT

To elucidate the mechanism of gentamicin induced renal dysfunction, renal functions and activities of various proximal tubular transport systems were studied in gentamicin-treated rats (Fisher 344). Gentamicin nephrotoxicity was induced by injecting gentamicin sulfate subcutaneously at a dose of 100 mg/kg cntdot day for 7 days. The gentamicin injection resulted in a marked polyuria, hyposthenuria, proteinuria, glycosuria, aminoaciduria, phosphaturia, natriuresis, and kaliuresis, characteristics of aminoglycoside nephropathy. Such renal functional changes occurred in the face of reduced GFR, thus tubular transport functions appeared to be impaired. The polyuria and hyposthenuria were partly associated with a mild osmotic diuresis, but mostly attributed to a reduction in free water reabsorption. In renal cortical brush-border membrane vesicles isolated from gentamicin-treated rats, the Na+ gradient dependent transport of glucose, alanine, phosphate and succinate was significantly attenuated with no changes in Na+/-independent transport and the membrane permeability to Na+. These results indicate that gentamicin treatment induces a defect in free water reabsorption in the distal nephron and impairs various Na+/-cotransport systems in the proximal tubular brush-border membranes, leading to polyuria, hyposthenuria, and increased urinary excretion of Na+ and other solutes.


Subject(s)
Animals , Rats , Alanine , Diuresis , Gentamicins , Glucose , Glycosuria , Hypophosphatemia, Familial , Membranes , Natriuresis , Nephrons , Permeability , Polyuria , Proteinuria , Succinic Acid , Water
SELECTION OF CITATIONS
SEARCH DETAIL